Answer:
k = 3 + 6x
Step-by-step explanation:
Using the rule of exponents
[tex]a^{m}[/tex] × [tex]a^{n}[/tex] ⇔ [tex]a^{(m+n)}[/tex]
[tex](a^{m}) ^{n}[/tex] = [tex]a^{mn}[/tex]
Given
27 × [tex]9^{3x}[/tex]
= 3³ × [tex](3^{2}) ^{3x}[/tex]
= 3³ × [tex]3^{6x}[/tex]
= [tex]3^{3+6x}[/tex]
= [tex]3^{k}[/tex] → with k = 3 + 6x