Find the value of X in the triangle

Answer:
Step-by-step explanation:
[tex]m\angle BAC=180^o-124^o=56^o\\\\\overline{AB}=\overline{BC}\quad\implies\quad m\angle BCA=m\angle BAC=56^o\\\\m\angle ABC=180^o-2\cdot56^o=68^o[/tex]
[tex]m\angle DBE=m\angle ABC=68^o[/tex] {vertical angles}
[tex]\overline{BD}=\overline{DE}\quad\implies\quad m\angle DEB=m\angle DBE=68^o\\\\m\angle x=180^o-2\cdot68^o=44^o[/tex]