1.A Radio station broadcasts modern song on medium wave 350 Hz every day at ten o’clock in the morning. The velocity of radio wave is 3X108 ms-1. The wavelength of another wave created in water is one percent of the radio wave and the velocity of sound in water is 1450 ms-1.
How many times of the frequency of the radio wave that of the wave created in the water? Analyze mathematically.

Respuesta :

Answer:

[tex]ans \: = \boxed{{4.8 \times 10}^{ - 4} Hz}[/tex]

Explanation:

[tex]given \to \\ f_{r} = 350 \: \\ v_{r} = {3 \times 10}^{8} \\ but \to \\ v = f \gamma \to \: \gamma = \frac{v}{f} : hence \to \\ \gamma _{r} = \frac{v_{r}}{f_{r}} = \frac{3 \times 10^{8} }{350} = \boxed{857,142.85714 \: m}\\ therefore \to \\ given \to \\ f_{w} = water \: frequency = \: \boxed{ ?}\: \\ v_{w} = 14 50 \\ but \to \\ v = f \gamma \to \: \gamma = \frac{v}{f} : hence \to \\ \gamma _{w} = \frac{v_{w}}{f_{w}} = \frac{1}{100} \times \gamma _{r} = \frac{1}{100} \times 857,142.85714 \\\gamma _{w} = \boxed{8,571.4285714 \: m} : hence \to \: \\ f_{w} = \frac{v_{w}}{ \gamma _{w}} = \frac{1450}{8,571.4285714} = \boxed{0.1691666667} \\ if \: the \: number \: of \: times = \boxed{ x} \\ f_{r} (x)=f_{w} \\ (x) = \frac{f_{w}}{f_{r}} = \frac{0.1691666667}{350} = 0.0004833333 \\ hence \to \\ the \: frequency \: of \: the \: radio \: wave \: is \to \: \boxed{{4.8 \times 10}^{ - 4} }\: \\ that \: of \: the \: wave \: created \: in \: the \: water.[/tex]

♨Rage♨