Respuesta :

Answer:

[tex]\displaystyle n^3-\frac{1}{n^{2}}[/tex]

Step-by-step explanation:

Exponents Properties

We need to recall the following properties of exponents:

[tex](a^x)^y=(a^y)^x=a^{xy}[/tex]

[tex]\displaystyle a^{-x}=\frac{1}{a^x}[/tex]

We are given the expression:

[tex]2^m=n[/tex]

We need to express the following expression in terms of n.

[tex]8^m-4^{-m}[/tex]

It's necessary to modify the expression to use the given equivalence.

Recall [tex]8=2^3 \text{ and }4 = 2^2[/tex]. Thus:

[tex](2^3)^m-(2^2)^{-m}[/tex]

Applying the property:

[tex](2^m)^3-(2^m)^{-2}[/tex]

Substituting the given expression:

[tex]n^3-n^{-2}[/tex]

Or, equivalently:

[tex]\mathbf{\displaystyle 8^m-4^{-m}= n^3-\frac{1}{n^{2}}}[/tex]