Respuesta :

Answer:

[tex]\mid \vec C\mid=31.9[/tex]

Explanation:

Consider the vectors:

[tex]\vec A=9.4\mathbf{\hat{i}}-3.6\mathbf{\hat{j}}[/tex]

[tex]\vec B=-9.5\mathbf{\hat{i}}-13.4\mathbf{\hat{j}}[/tex]

Calculate the magnitude of

[tex]\vec C=-2\vec B-\vec A[/tex]

Substitute the values of the vectors:

[tex]\vec C=-2(-9.5\mathbf{\hat{i}}-13.4\mathbf{\hat{j}})-(9.4\mathbf{\hat{i}}-3.6\mathbf{\hat{j}})[/tex]

Operate and remove parentheses:

[tex]\vec C=19\mathbf{\hat{i}}+26.8\mathbf{\hat{j}}-9.4\mathbf{\hat{i}}+3.6\mathbf {\hat{j}}[/tex]

Operating both components separately:

[tex]\vec C=9.6\mathbf{\hat{i}}+30.4\mathbf{\hat{j}}[/tex]

Now find the magnitude of C:

[tex]\mid \vec C\mid=\sqrt{9.6^2+30.4^2}[/tex]

[tex]\mid \vec C\mid=\sqrt{1016.32}[/tex]

[tex]\mathbf{\mid \vec C\mid=31.9}[/tex]