A student wants to use the property
(
x

y
)
(
x
+
y
)
=
(
x
2

y
2
)
to find the product
(
26
)
(
34
)
.
Which statement is true?

Respuesta :

The property is an illustration of difference of two squares

The true statement is [tex]\mathbf{(30 - 4)(30 + 4) = 30^2 -4^2}[/tex]

The property is given as:

[tex]\mathbf{(x - y)(x + y) = x^2 - y^2}[/tex]

The product is given as:

[tex]\mathbf{(26)(34)}[/tex]

Let x - y = 26, and x + y = 34.

So, we have:

[tex]\mathbf{x - y = 26}[/tex]

[tex]\mathbf{x + y = 34}[/tex]

Make x the subject in [tex]\mathbf{x - y = 26}[/tex]

[tex]\mathbf{x = 26 +y}[/tex]

Substitute 26 + y for x in [tex]\mathbf{x + y = 34}[/tex]

[tex]\mathbf{26 + y+ y = 34}[/tex]

[tex]\mathbf{26 + 2y = 34}[/tex]

Subtract 26 from both sides

[tex]\mathbf{2y = 34 -26}[/tex]

[tex]\mathbf{2y = 8}[/tex]

Divide both sides by 2

[tex]\mathbf{y = 4}[/tex]

Substitute 4 for y in [tex]\mathbf{x = 26 +y}[/tex]

[tex]\mathbf{x = 26 + 4}[/tex]

[tex]\mathbf{x = 30}[/tex]

So, we have:

[tex]\mathbf{(x - y)(x + y) = x^2 - y^2}[/tex]

[tex]\mathbf{(30 - 4)(30 + 4) = 30^2 -4^2}[/tex]

Hence, the true statement is [tex]\mathbf{(30 - 4)(30 + 4) = 30^2 -4^2}[/tex]

Read more about difference of two squares at:

https://brainly.com/question/23651973