The property is an illustration of difference of two squares
The true statement is [tex]\mathbf{(30 - 4)(30 + 4) = 30^2 -4^2}[/tex]
The property is given as:
[tex]\mathbf{(x - y)(x + y) = x^2 - y^2}[/tex]
The product is given as:
[tex]\mathbf{(26)(34)}[/tex]
Let x - y = 26, and x + y = 34.
So, we have:
[tex]\mathbf{x - y = 26}[/tex]
[tex]\mathbf{x + y = 34}[/tex]
Make x the subject in [tex]\mathbf{x - y = 26}[/tex]
[tex]\mathbf{x = 26 +y}[/tex]
Substitute 26 + y for x in [tex]\mathbf{x + y = 34}[/tex]
[tex]\mathbf{26 + y+ y = 34}[/tex]
[tex]\mathbf{26 + 2y = 34}[/tex]
Subtract 26 from both sides
[tex]\mathbf{2y = 34 -26}[/tex]
[tex]\mathbf{2y = 8}[/tex]
Divide both sides by 2
[tex]\mathbf{y = 4}[/tex]
Substitute 4 for y in [tex]\mathbf{x = 26 +y}[/tex]
[tex]\mathbf{x = 26 + 4}[/tex]
[tex]\mathbf{x = 30}[/tex]
So, we have:
[tex]\mathbf{(x - y)(x + y) = x^2 - y^2}[/tex]
[tex]\mathbf{(30 - 4)(30 + 4) = 30^2 -4^2}[/tex]
Hence, the true statement is [tex]\mathbf{(30 - 4)(30 + 4) = 30^2 -4^2}[/tex]
Read more about difference of two squares at:
https://brainly.com/question/23651973