how many terms do you have to compute in order for your approximation (your partial sum) to be within 0.0000001 from the convergent value of that series

Respuesta :

Answer:

The answer is "4 terms".

Step-by-step explanation:

[tex]\sum_{n=1}^{\infty} \frac{(-1)^{n+2} (0.4)^{2n+1}}{(2n+1)!} \ \ \ \ \ error \leq 0.0000001\\\\\\\sum_{n=1}^{\infty} \frac{(-1)^{n+2} (0.4)^{2n+1}}{(2n+1)!} = \frac{-1^{0+2}}{1!}(0.4) + \frac{-1^{1+2}}{3!}(0.4)^3 +\frac{-1^{2+2}}{5!}(0.4)^5+\frac{-1^{3+2}}{7!}(0.4)^7+..\\\\[/tex]

                                  [tex]=0.4 - \frac{0.4^3}{3!} + \frac{0.4^5}{5!} - \frac{0.4^7}{7!}+ \frac{0.4^9}{9!} - \frac{0.4^{11}}{11!}+............\\[/tex]

Note that, alternatively, positive and negative terms are given in the sequence. It is also alternating  

Apply alternative test series:

[tex]\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1-b_2+b_3-b_4+b_5-......+(-1)^{n-1} b_n >0\\\\i) b_{n+1}<b_n \ \ \ \ \forall_n \\\\ii) lim_{x\longrightarrow \infity} \ b_n = 0[/tex]

use alternating test method we get:

[tex]\sum_{n=1}^{\infty} \frac{-1^{n-1}}{n^2}\\\\s =0.4 - \frac{0.4^3}{3!} + \frac{0.4^5}{5!} - \frac{0.4^7}{7!}+ \frac{0.4^9}{9!} - \frac{0.4^{11}}{11!}+..\\\\b_5= \frac{0.4^9}{9!} = 0.00000000072 < \frac{1}{10^7} =0.0000001[/tex]

that's why its value is 4 terms

The approximation 0.0000001 within the convergent value of that series the fourth term.

What is an alternative test series?

It is the convergent series when it is term decrease in absolute value and approaches the zero limit.

[tex]\sum_{n=1}^{\infty} \dfrac{(-1)^{n+2}(0.4)^{2n+1}}{(2n+1)!}[/tex]

When error ≤ 0.0000001

[tex]\begin{aligned} \sum_{n=1}^{\infty} \dfrac{(-1)^{n+2}(0.4)^{2n+1}}{(2n+1)!} &= \dfrac{(-1)^{0+2}}{1!}(0.4) + \dfrac{(-1)^{1+2}}{3!}(0.4)^{3} + ..............\\\\&= 0.4 - \dfrac{0.4^{3}}{3!} + \dfrac{0.4^{5}}{5!} - \dfrac{0.4^{7}}{7!} + ...............\end{aligned}[/tex]

Now by the alternative test series, we have

[tex]\Sigma _{n=1}^{\infty} (-1)^{n-1} b_n =b_1-b_2+b_3-b_4+....+(-1)^{n-1}b_n > 0\\[/tex]

Then

[tex]i) \ \ b_{n+1} < b_n \ \ \ \ \forall _n\\\\ii) \ \ lim_{x \rightarrow } b_n = 0[/tex]

Then by the alternative test method, we have

[tex]\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^{2}} \\\\s = 0.4 - \dfrac{0.4^3}{3!} + \dfrac{0.4^5}{5!} -\dfrac{0.4^7}{7!}+....\\\\b_5 = \dfrac{0.4^9}{9!} = 0.00000000072 < \dfrac{1}{10^7} = 0.0000001[/tex]

More about the alternative test series link is given below.

https://brainly.com/question/16969349