Answer:
[tex]62.14\ \text{miles}[/tex]
[tex]6213727.37\ \text{miles}[/tex]
Explanation:
The distance of the chain would be the product of the dislocation density and the volume of the metal.
Dislocation density = [tex]10^5\ \text{mm}^{-2}[/tex]
Volume of the metal = [tex]1000\ \text{mm}^3[/tex]
[tex]10^5\times 1000=10^8\ \text{mm}\\ =10^5\ \text{m}[/tex]
[tex]1\ \text{mile}=1609.34\ \text{m}[/tex]
[tex]\dfrac{10^5}{1609.34}=62.14\ \text{miles}[/tex]
The chain would extend [tex]62.14\ \text{miles}[/tex]
Dislocation density = [tex]10^{10}\ \text{mm}^{-2}[/tex]
Volume of the metal = [tex]1000\ \text{mm}^3[/tex]
[tex]10^{10}\times 1000=10^{13}\ \text{mm}\\ =10^{10}\ \text{m}[/tex]
[tex]\dfrac{10^{10}}{1609.34}=6213727.37\ \text{miles}[/tex]
The chain would extend [tex]6213727.37\ \text{miles}[/tex]