Answer:
Ф = [tex]\frac{Q}{e_{0} } [ \frac{\frac{4\pi }{3 }(R)^3 }{\frac{4}{3}\pi (R)^3 } ][/tex]
Explanation:
Radius of Gaussian surface = R
Charge in the Sphere ( Gaussian surface ) = Q
lets take the radius of the sphere to be equal to radius of the Gaussian surface i.e. R
To determine the net electric flux through the Gaussian surface
we have to apply Gauci law
Ф = 4[tex]\pi r^2 E[/tex]
Ф = [tex]\frac{Q_{enc} |}{e_{0} }[/tex]
= [tex]\frac{Q}{e_{0} } [ \frac{\frac{4\pi }{3 }(R)^3 }{\frac{4}{3}\pi (R)^3 } ][/tex]