Respuesta :

Answer: When r= 9.5% , time = 7.3 years

When r= 2.5% , time = 27.7 years

Step-by-step explanation:

Exponential equation for compounded continuously:

[tex]A=Pe^{rx}[/tex] , where P= Principal value invested , r= rate of interest, x= time

Given : P= $6,000

A = 2P= 2 ($6,000) = $12,000  (i)

When r= 9.5%= 0.095

[tex]A= 6000e^{0.095x}[/tex]  (ii)

From (i) and (ii)

[tex]6000e^{0.095x}=12000\\\\\Rightarrow\ e^{0.095x}=2\\\\\Rightarrow\ \ln e^{0.095x} =\ln 2\\\\\Rightarrow\ 0.095x=0.693147\\\\\Rightarrow\ x=\dfrac{0.693147}{0.095}=7.296284210\approx7.3 \text{ years}[/tex]

For r= 2.5% = 0.025

[tex]6000e^{0.025x}=12000\\\\\Rightarrow\ e^{0.025}=2\\\\\Rightarrow\ \ln e^{0.025x} =\ln 2\\\\\Rightarrow\ 0.025x=0.693147\\\\\Rightarrow\ x=\dfrac{0.693147}{0.025}=27.72588\approx27.7 \text{ years}[/tex]