Tthe area of a circle increases at a rate of 5 cm^2/s.

Required:
a. How fast is the radius changing when the radius is 4 cm?
b. How fast is the radius changing when the circumference is 5 cm?

Respuesta :

Answer:

(a) 0.198 cm/s (b) 1 cm/s

Step-by-step explanation:

It is given that,

The rate of change of area of a cicle, [tex]\dfrac{dA}{dt}=5\ cm^2/s[/tex]

(a) The area of a circle is given by :

[tex]A=\pi r^2[/tex]

Differentiate both sides,

[tex]\dfrac{dA}{dt}=2\pi r\dfrac{dr}{dt}\\\\\text{Put the value of dA/dt and r = 4 cm}\\\\\dfrac{dr}{dt}=\dfrac{dA/dt}{2\pi r}\\\\\dfrac{dr}{dt}=\dfrac{5}{2\pi \times 4}\\\\\dfrac{dr}{dt}=0.198\ cm/s[/tex]

(b) Circumference, [tex]C=2\pi r[/tex] = 5 cm

[tex]\dfrac{dA}{dt}=2\pi r\dfrac{dr}{dt}\\\\\dfrac{dr}{dt}=\dfrac{dA/dt}{2\pi r}\\\\\dfrac{dr}{dt}=\dfrac{5}{5}\\\\\dfrac{dr}{dt}=1\ cm/s[/tex]

Hence,

(a) 0.198 cm/s (b) 1 cm/s