Answer:
[tex]x = 12[/tex]
Step-by-step explanation:
Given
Shapes: Square and Rectangle
Square:
[tex]Length = x[/tex]
Rectangle:
[tex]Length = 12 + 2x[/tex]
[tex]Width = x- 8[/tex]
Required
Find x
First, we calculate the area of the square.
[tex]Area = x * x[/tex]
[tex]Area = x^2[/tex]
Next, we calculate the area of the rectangle
[tex]Area = (12 + 2x) * (x - 8)[/tex]
[tex]Area = 12x -96 + 2x^2 - 16x[/tex]
[tex]Area = 2x^2 - 16x + 12x -96[/tex]
[tex]Area = 2x^2 -4x -96[/tex]
Since both areas are equal, we have:
[tex]x^2 = 2x^2 -4x -96[/tex]
Equate to 0
[tex]2x^2 -x^2 -4x -96= 0[/tex]
[tex]x^2 -4x -96= 0[/tex]
Expand:
[tex]x^2 - 12x + 8x -96 = 0[/tex]
[tex]x(x - 12) + 8(x - 12) = 0[/tex]
[tex](x + 8)(x - 12) = 0[/tex]
[tex]x + 8 = 0[/tex] or [tex]x - 12 = 0[/tex]
[tex]x = -8[/tex] or [tex]x = 12[/tex]
But x can't be negative.
Hence:
[tex]x = 12[/tex]