The sum of three numbers is 12 . The sum of twice the first​ number, 3 times the second​ number, and 4 times the third number is 37 . The difference between 7 times the first number and the second number is 25. Find the three numbers.

Respuesta :

Given:

The sum of three numbers is 12 .

The sum of twice the first​ number, 3 times the second​ number, and 4 times the third number is 37 .

The difference between 7 times the first number and the second number is 25.

To find:

The three number.

Solution:

Let the three numbers are x, y and z respectively.

According to the question,

[tex]x+y+z=12[/tex]           ...(i)

[tex]2x+3y+4z=37[/tex]         ...(ii)

[tex]7x-y=25[/tex]           ...(iii)

From (iii), we get

[tex]-y=25-7x[/tex]

[tex]y=-25+7x[/tex]

Put [tex]y=-25+7x[/tex] value in (i).

[tex]x+(-25+7x)+z=12[/tex]

[tex]8x-25+z=12[/tex]

[tex]8x+z=12+25[/tex]

[tex]8x+z=37[/tex]        ...(iv)

Put [tex]y=-25+7x[/tex] value in (ii).

[tex]2x+3(-25+7x)+4z=37[/tex]

[tex]2x-75+21x+4z=37[/tex]

[tex]23x+4z=37+75[/tex]

[tex]23x+4z=112[/tex]          ...(v)

Now, Multiply equation (iv) by 4 and subtract the result from (v).

[tex]23x+4z-4(8x+z)=112-4(37)[/tex]

[tex]23x+4z-32x-4z=112-148[/tex]

[tex]-9x=-36[/tex]

[tex]x=4[/tex]

Put x=4 in (iv).

[tex]8(4)+z=37[/tex]

[tex]32+z=37[/tex]

[tex]z=37-32[/tex]

[tex]z=5[/tex]

Put x=4 in [tex]y=-25+7x[/tex].

[tex]y=-25+7(4)[/tex]

[tex]y=-25+28[/tex]

[tex]y=3[/tex]

Therefore, the three numbers are 4, 3 and 5 respectively.