Answer:
If we know that [tex]x = 1[/tex] and [tex]y = 9[/tex], the value of [tex]g[/tex] is 19.
Step-by-step explanation:
Let [tex]C(x,y) =(-2,12)[/tex] and [tex]D(x,y) =(4,6)[/tex], from Analytical Geometry and Linear Algebra we have that midpoint of CD is determined by:
[tex]M(x,y) = \frac{1}{2}\cdot C(x,y)+\frac{1}{2}\cdot D(x,y)[/tex] (Eq. 1)
[tex]M(x,y) = \frac{1}{2}\cdot (-2,12)+\frac{1}{2}\cdot (4,6)[/tex]
[tex]M(x,y) = (-1,6)+(2,3)[/tex]
[tex]M(x,y) =(-1+2,6+3)[/tex]
[tex]M(x,y)= (1,9)[/tex]
If we know that [tex]x = 1[/tex] and [tex]y = 9[/tex], the value of [tex]g[/tex] is 19.