Answer:
[tex]S.E = 2[/tex]
Step-by-step explanation:
Given
[tex]Mean = 40[/tex]
[tex]s^2 = 64[/tex] ----- variance
[tex]n = 16[/tex] ------------ sample
Required
Determine the S.E
The estimated standard error (S.E) for the sample mean is calculated using the following formula:
[tex]S.E = \frac{SD}{\sqrt n}[/tex]
Where
[tex]SD = Standard\ Deviation[/tex]
[tex]SD = \sqrt {s^2}[/tex]
[tex]SD = \sqrt {64}[/tex]
[tex]SD = 8[/tex]
So:
[tex]S.E = \frac{SD}{\sqrt n}[/tex]
[tex]S.E = \frac{8}{\sqrt{16}}[/tex]
[tex]S.E = \frac{8}{4}[/tex]
[tex]S.E = 2[/tex]
Hence: the estimated standard error for the sample mean is 2