A sample of n = 16 scores has a mean of M = 40 and a variance of s2 = 64. What is the estimated standard error for the sample mean?

Respuesta :

Answer:

[tex]S.E = 2[/tex]

Step-by-step explanation:

Given

[tex]Mean = 40[/tex]

[tex]s^2 = 64[/tex] ----- variance

[tex]n = 16[/tex] ------------ sample

Required

Determine the S.E

The estimated standard error (S.E) for the sample mean is calculated using the following formula:

[tex]S.E = \frac{SD}{\sqrt n}[/tex]

Where

[tex]SD = Standard\ Deviation[/tex]

[tex]SD = \sqrt {s^2}[/tex]

[tex]SD = \sqrt {64}[/tex]

[tex]SD = 8[/tex]

So:

[tex]S.E = \frac{SD}{\sqrt n}[/tex]

[tex]S.E = \frac{8}{\sqrt{16}}[/tex]

[tex]S.E = \frac{8}{4}[/tex]

[tex]S.E = 2[/tex]

Hence: the estimated standard error for the sample mean is 2