Respuesta :

Given:

The edge length of a cube is changing at a rate of 10 in/sec.

To find:

The rate by which cube's volume changing when the edge length is 3 inches.

Solution:

We have,

[tex]\dfrac{da}{dt}=10\text{ in/sec}[/tex]

We know that, volume of cube is

[tex]V=a^3[/tex]

Differentiate with respect to t.

[tex]\dfrac{dV}{dt}=3a^2\dfrac{da}{dt}[/tex]

Substituting [tex]\dfrac{da}{dt}=10[/tex] and a=3, we get

[tex]\dfrac{dV}{dt}_{a=3}=3(3)^2(10)[/tex]

[tex]\dfrac{dV}{dt}_{a=3}=3(9)(10)[/tex]

[tex]\dfrac{dV}{dt}_{a=3}=270[/tex]

Therefore, the volume increased by 270 cubic inches per sec.