Answer:
The Margin of Error E [tex]\simeq[/tex] 4.1 %
Step-by-step explanation:
Given that:
The sample size = 579
The sample proportion [tex]\hat p = 55\%[/tex] = 0.55
From the confidence interval of 95%
The level of significance ∝ = 1 - C.I = 1 - 0.95 = 0.05
The critical value of [tex]Z_{\alpha/2 } = Z_{0.025} = 1.96[/tex]
Thus;
The Margin of Error E = [tex]Z_{\alpha/2 } \times \sqrt{{\dfrac {\hat p ( 1 - \hat p }{n}}[/tex]
The Margin of Error E = [tex]1.96 \times \sqrt{{\dfrac {0.55 ( 1 - 0.55) }{579}}[/tex]
The Margin of Error E = [tex]1.96 \times \sqrt{{\dfrac {0.55 ( 0.45 )}{579}}[/tex]
The Margin of Error E = [tex]1.96 \times \sqrt{{\dfrac {0.2475}{579}}[/tex]
The Margin of Error E = [tex]1.96 \times \sqrt{{4.2746114 \times 10^{-4}}[/tex]
The Margin of Error E = [tex]1.96 \times .020675[/tex]
The Margin of Error E = 0.040523
The Margin of Error E [tex]\simeq[/tex] 0.041
The Margin of Error E [tex]\simeq[/tex] 4.1%