We know, for single slit :
[tex]y =\dfrac{ n\lambda L}{a}\\\\\lambda = \dfrac{ya}{nL}[/tex] ...1)
[tex]y = 1.4\ mm = 1.4 \times 10^{-3}\ m[/tex]
n = 2
L = 89 cm = 0.89 m
[tex]a=7.1\times 10^{-4}\ m[/tex]
Putting all these in equation 1), we get :
[tex]\lambda = \dfrac{ya}{nL}\\\\\lambda = \dfrac{1.4\times 10^{-3}\times 7.1\times 10^{-4}}{2\times 0.89 }\\\\\lambda = 5.584 \times 10^{-7}\ m[/tex]
Therefore, wavelength of the incident light is [tex]5.584 \times 10^{-7}\ m[/tex] or 558.4 nm.
Hence, this is the required solution.