Answer:
The length and width of the rectangular garden are 20 feet and 10 feet.
Step-by-step explanation:
Given that the length of fencing = 60 feet
The area of the garden = 200 sq. feet.
As the length of the fencing is equal to the perimeter of the garden, so the perimeter of the rectangular garden is 60 feet.
Let l and b be the length and width of the rectangular garden.
So, the perimeter of the garden = 2(l+b)=60
[tex]\Rightarrow l+b=60/2=30[/tex]
[tex]\Rightarrow l=30-b\cdots(i)[/tex]
The area of the rectangular garden [tex]= l\times b=200[/tex]
[tex]\Rightarrow (30-b)b=200[/tex] [from equation (i)]
[tex]\Rightarrow 30b-b^2=200[/tex]
[tex]\Rightarrow b^2-30b+200=0[/tex]
[tex]\Rightarrow b^2-10b-20b+200=0[/tex]
[tex]\Rightarrow b(b-10)-20(b-10)=0[/tex]
[tex]\Rightarrow (b-20)(b-10)=0[/tex]
[tex]\Rightarrow b-20=0 \;or\; b-10=0[/tex]
[tex]\Rightarrow b= 20\;or\; 10[/tex]
Now, from equation (i),
If b=20 than l= 30-20=10
or if b=10 than l=30-10=20.
Hence, the length and width of the rectangular garden are 20 feet and 10 feet.