The weekly amount spent by a small company for in-state travel has approximately a normal distribution with mean $1450 and standard deviation $220. What is the probability that the actual expenses will exceed $1560 in 20 or more weeks during the next year?

Respuesta :

Answer:

0.0903

Step-by-step explanation:

Given that :

The mean = 1450

The standard deviation = 220

sample mean = 1560

[tex]P(X > 1560) = P( Z > \dfrac{x - \mu}{\sigma})[/tex]

[tex]P(X > 1560) = P(Z > \dfrac{1560 - 1450}{220})[/tex]

[tex]P(X > 1560) = P(Z > \dfrac{110}{220})[/tex]

P(X> 1560) = P(Z > 0.5)

P(X> 1560) = 1 - P(Z < 0.5)

From the z tables;

P(X> 1560) = 1 - 0.6915

P(X> 1560) = 0.3085

Let consider the given number of weeks = 52

Mean [tex]\mu_x[/tex] = np = 52 × 0.3085 = 16.042

The standard deviation =  [tex]\sqrt {n \time p (1-p)}[/tex]

The standard deviation = [tex]\sqrt {52 \times 0.3085 (1-0.3085)}[/tex]

The standard deviation = 3.3306

Let Y be a random variable that proceeds in a binomial distribution, which denotes the number of weeks in a year that exceeds $1560.

Then;

Pr ( Y > 20) = P( z > 20)

[tex]Pr ( Y > 20) = P(Z > \dfrac{20.5 - 16.042}{3.3306})[/tex]

[tex]Pr ( Y > 20) = P(Z >1 .338)[/tex]

From z tables

P(Y > 20) [tex]\simeq[/tex] 0.0903