Respuesta :

Answer:

∑ₙ₌₀°° 8 (-1)ⁿ x⁴ⁿ⁺¹ / (9ⁿ (2n)!)

Step-by-step explanation:

Start with the Maclaurin series for cos x.

cos x = ∑ₙ₌₀°° (-1)ⁿ x²ⁿ / (2n)!

Substitute ⅓ x².

cos (⅓ x²) = ∑ₙ₌₀°° (-1)ⁿ (⅓ x²)²ⁿ / (2n)!

cos (⅓ x²) = ∑ₙ₌₀°° (-1)ⁿ (⅓)²ⁿ x⁴ⁿ / (2n)!

cos (⅓ x²) = ∑ₙ₌₀°° (-1)ⁿ x⁴ⁿ / (9ⁿ (2n)!)

Multiply by 8x.

8x cos (⅓ x²) = ∑ₙ₌₀°° 8x (-1)ⁿ x⁴ⁿ / (9ⁿ (2n)!)

8x cos (⅓ x²) = ∑ₙ₌₀°° 8 (-1)ⁿ x⁴ⁿ⁺¹ / (9ⁿ (2n)!)