Which expression is equivalent to tan(x – Pi)?

StartFraction tangent (x) minus tangent (pi) Over 1 minus (tangent (x) ) (tangent (pi) ) EndFraction
StartFraction tangent (x) minus tangent (pi) Over 1 + (tangent (x) ) (tangent (pi) ) EndFraction
StartFraction tangent (x) + tangent (pi) Over 1 minus (tangent (x) ) (tangent (pi) ) EndFraction
StartFraction tangent (x) + tangent (pi) Over 1 + (tangent (x) ) (tangent (pi) ) EndFraction

Respuesta :

Answer:

[tex]Tan(x - \pi) = \frac{Tan\ x - Tan\pi}{1 + Tanx\ Tan\pi}[/tex]

Step-by-step explanation:

Given

[tex]tan(x - \pi)[/tex]

Required

Evaluate

To solve this, we simply tangent formula in trigonometry;

i.e.

[tex]Tan(A - B) = \frac{Tan\ A - Tan\ B}{1 + TanA\ TanB}[/tex]

In this case:

[tex]A = x[/tex]

[tex]B = \pi[/tex]

i.e we substitute x for A and π for B.

So, we have:

[tex]Tan(x - \pi) = \frac{Tan\ x - Tan\pi}{1 + Tanx\ Tan\pi}[/tex]

Answer:

B on edge

Step-by-step explanation: