Respuesta :

Answer:

Scalene triangle

Step-by-step explanation:

Coordinates of the vertices of the triangle are,

W(-7, 1), X(0, -4) and Y(2, 3)

We will use the formula to get the distance between two points.

d = [tex]\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}[/tex]

WX = [tex]\sqrt{(-4-1)^2+(0+7)^2}[/tex]

      = [tex]\sqrt{74}[/tex]

WY = [tex]\sqrt{(1-3)^2+(-7-2)^2}[/tex]

      = [tex]\sqrt{85}[/tex]

XY = [tex]\sqrt{(3+4)^2+(2-0)^2}[/tex]

     = [tex]\sqrt{49+4}[/tex]

     = [tex]\sqrt{53}[/tex]

Since, measures of all three sides of the triangle are not equal, given triangle will be a scalene triangle.

aksnkj

The given triangle WXY is a scalene triangle.

Given information:

The vertices of the given triangle WXY are:

W(-7,1), X(0,-4) and Y(2,3)

Use the distance formula to calculate the length of each side of the triangle,

[tex]WX=\sqrt{(0+7)^2+(-4-1)^2}\\=\sqrt{49+25}\\=\sqrt{74}\\XY=\sqrt{(2-0)^2+(3+4)^2}\\=\sqrt{4+49}\\=\sqrt{53}\\YW=\sqrt{(2+7)^2+(3-1)^2}\\=\sqrt{81+4}\\=\sqrt{85}[/tex]

So, the length of sides of the triangle are,

[tex]WX=\sqrt{74}\\XY=\sqrt{53}\\YW=\sqrt{85}[/tex]

The length of each side of the triangle is different.

Therefore, the given triangle WXY is a scalene triangle.

For more details, refer to the link:

https://brainly.com/question/71956