Respuesta :

Answer:

Values of x are: x=0 or x=-3 or x=-12

Step-by-step explanation:

The equation given to solve using zero product property is [tex]2x^3+30x^2+72x=0[/tex]

Zero property rule states that if ab=0 then a=0 or b=0

Taking x common from the equation:

[tex]2x^3+30x^2+72x=0\\x(2x^2+30x+72)=0\\[/tex]

Applying zero product rule

[tex]x(2x^2+30x+72)=0\\x=0 \ or \ 2x^2+30x+72=0[/tex]

Now, solving [tex]2x^2+30x+72=0[/tex]

Using quadratic formula to find value of x

[tex]$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$[/tex]

Putting values

[tex]$x=\frac{-30\pm\sqrt{(30)^2-4(2)(72)}}{2(2)}$\\$x=\frac{-30\pm\sqrt{324}}{4}$\\$x=\frac{-30\pm18}{4}$\\$x=\frac{-30+18}{4} \ or \ x=\frac{-30-18}{4}$ \\x=-3 \ or \ x=-12[/tex]

So, Values of x are: x=0 or x=-3 or x=-12