A hand glider dives at 25 mph in a direction 60° below
horizontal. What is the component form of the velocity vector?

a. (25-2, 25squareroot3/2)
b. (25/2, -25squareroot3/2)
c. (-25/2, 25squareroot3/2)
d. (-25/2, -25squareroot3/2)

Respuesta :

Answer:

[tex]b.)= (\frac{25}{2} , \ -25\frac{\sqrt{3} }{2})\ mph[/tex]

Step-by-step explanation:

Given;

velocity of the diver, v = 25 mph

direction of his dive, θ = 60°

The vertical component of the velocity is given by;

[tex]-V_y = vsin\theta \ \ (below \ horizontal \ is \ in \ negative\ y-direction)\\\\V_y =-(25)(sin 60)\\\\V_y =-(25)(\frac{\sqrt{3} }{2} )[/tex]

The horizontal component of the velocity is given by;

[tex]V_x =vcos\theta\\\\V_x =(25)(cos 60 )\\\\V_x =(25)(\frac{1 }{2} )\\\\V_x = \frac{25}{2}[/tex]

Therefore, the component form of the velocity vector is given by;

[tex](V_x, \ V_y) = (\frac{25}{2} , \ -25\frac{\sqrt{3} }{2})\ mph[/tex]

correct option = [tex]b.)= (\frac{25}{2} , \ -25\frac{\sqrt{3} }{2})\ mph[/tex]

Answer:

B

Step-by-step explanation: