Miiso
contestada

WILL AWARD BRAINLIEST!!!!!!

Triangle ABC is an oblique triangle. If angle A equals 57°, angle B equals 73°, and AB equals 24 in, what is the length of side AC?
a.) 30 in
b.) 32 in
c.) 34 in
d.) 36 in

Respuesta :

Answer:

Answer is A hope it helps

Step-by-step explanation:

I meant A by my mistake    Angle C must  = [180 - 73 - 57 ] = [180 - 130] = 50°

And using rhw Law if Sines, we have.....

AB/sin C  = AC/sin B    →   24/sin(50) = AC/sin(73)   →    AC = 24*sin(73)/sin(50)  = about 29.96 in

The length of side AC will be 30 inches. Then the correct option is A.

What is law of sines?

Let the triangle ABC, with side measures |BC| = a. |AC| = b. |AB| = c.

Then by the sine law, we have

[tex]\rm \dfrac{\sin\angle A}{a} = \dfrac{\sin\angle B}{b} = \dfrac{\sin\angle C}{c}[/tex]

Then angle ∠C will be

We know the sum of angle of the triangle is 180°.

∠C + 57° + 73° = 180°

                  ∠C = 180° – 130°

                  ∠C = 50°

Then the length of side AC will be

  sin B / AC = sin C / AB

sin 73° / AC = sin 50° / 24

             AC = 29.96 ≈ 30 inches

Then the correct option is A.

Learn more about law of sines here:

https://brainly.com/question/17289163

#SPJ2

Ver imagen jainveenamrata

Otras preguntas