Answer:
3( n + [tex]\frac{17}{6}[/tex] )² - [tex]\frac{361}{12}[/tex] = 0
Step-by-step explanation:
3n² = 6 - 17n ⇔ 3n² + 17n - 6 = 0
3( n² + 2 × [tex]\frac{17}{6}[/tex] n + ( [tex]\frac{17}{6}[/tex] )² - ( [tex]\frac{17}{6}[/tex] )² - 2 ) = 0
3( n + [tex]\frac{17}{6}[/tex] )² - 3 × [tex]\frac{289}{36}[/tex] - 6 = 0
3( n + [tex]\frac{17}{6}[/tex] )² - [tex]\frac{361}{12}[/tex] = 0