Answer:
C. 6.02sec
Step-by-step explanation:
Given
[tex]h(t) = -16t\² +96t + 2[/tex]
Required
Time to hit the ground
When the turtle shell hits the ground, [tex]h(t) = 0[/tex]
So:
[tex]0 = -16t\² +96t + 2.[/tex]
Solving using quadratic formula:
[tex]t = \frac{-b\±\sqrt{b^2-fac}}{2a}[/tex]
Where:
[tex]a = -16; b =96; c = 2[/tex]
So:
[tex]t = \frac{-96\±\sqrt{96^2-4 * -16 * 2}}{2*-16}[/tex]
[tex]t = \frac{-96\±\sqrt{9344}}{-32}[/tex]
[tex]t = \frac{-96\±96.66}{-32}[/tex]
Split:
[tex]t = \frac{-96+96.66}{-32}[/tex] or [tex]t = \frac{-96-96.66}{-32}[/tex]
[tex]t = \frac{0.66}{-32}[/tex] or [tex]t = \frac{-192.66}{-32}[/tex]
[tex]t = -0.020625[/tex] or [tex]t = 6.020625[/tex]
So time can't be negative, we have:
[tex]t = 6.020625[/tex]
Option C answers the question