Answer:
See below
Step-by-step explanation:
[tex]y=f(x)=-2x+6[/tex]
Once by definition, the domain is all the possible inputs of the function, when it is defined, for the function [tex]f[/tex] the domain is all real numbers.
[tex]Dom(f) = \mathbb{R} = (-\infty, \infty )[/tex]
On the other hand, for example, the domain of tangent is
[tex]Dom(tan) = \left\{x: x\neq \dfrac{\pi}{2} + k\pi, k\in\mathbb{Z} \right\}[/tex]
Because the tangent function is undefined for [tex]\dfrac{\pi}{2} + k\pi, k\in\mathbb{Z}[/tex]
The domain of tangent can also be written as
[tex]$\bigcup_{k=-\infty}^{\infty} \left( \dfrac{(2k+1)\pi}{2}, \dfrac{(2k+3)\pi}{2} \right)$[/tex]