The time it takes a worker on an assembly line to complete a task is exponentially distributed with a mean of 8 minutes. What is the probability that it will take a worker less than 4 minutes to complete the task

Respuesta :

Answer:

The probability is [tex]0.3935[/tex]

Step-by-step explanation:

We know that the time it takes a worker on an assembly line to complete a task is exponentially distributed with a mean of 8 minutes.

Let's define the random variable ⇒

[tex]X:[/tex] '' The time it takes a worker on an assembly line to complete a task ''

We know that [tex]X[/tex] is exponentially distributed with a mean of 8 minutes ⇒

[tex]X[/tex] ~ Exp (λ)

Where '' λ '' is the parameter of the distribution.

Now, the mean of an exponential distribution is ⇒

[tex]E(X)=[/tex] 1 / λ  (I)

We have the value of the mean '' [tex]E(X)[/tex] '' , then we replace that value in the equation (I) to obtain the parameter λ ⇒

[tex]8=[/tex] 1 / λ  ⇒

λ = [tex]\frac{1}{8}[/tex]

Then ,  [tex]X[/tex] ~ [tex]Exp(\frac{1}{8})[/tex]

The cumulative distribution function of [tex]X[/tex] is :

[tex]F_{X}(x)=P(X\leq x)=0[/tex] when [tex]x<0[/tex] and

[tex]F_{X}(x)=P(X\leq x)=[/tex] 1 - e ^ ( - λx) when [tex]x\geq 0[/tex] (II)

If we replace the value of the parameter in (II) :

[tex]P(X\leq x)=1-e^{-\frac{x}{8}}[/tex]  when [tex]x\geq 0[/tex]

We need to calculate [tex]P(X<4)[/tex]

Given that [tex]X[/tex] is a continuous random variable :

[tex]P(X<4)=P(X\leq 4)[/tex]

We use the cumulative distribution function to calculate the probability :

[tex]P(X\leq 4)=F_{X}(4)=1-e^{-\frac{4}{8}}=0.3935[/tex]

The probability is [tex]0.3935[/tex]