Respuesta :

Answer:

[tex]Mean = 4[/tex]

[tex]Var = \frac{25}{12}[/tex]

Step-by-step explanation:

Given

Codes: 2,3,4,5,6

Required

Determine the Mean and Variance

Equally likely implies that the data follows a uniform distribution.

So,

[tex]Mean = \frac{a+b}{2}[/tex]

Where

[tex]a = Lower\ Bound = 2[/tex]

[tex]b = Upper\ Bound = 6[/tex]

[tex]Mean = \frac{a+b}{2}[/tex]

[tex]Mean = \frac{2 + 6}{2}[/tex]

[tex]Mean = \frac{8}{2}[/tex]

[tex]Mean = 4[/tex]

Variance of a uniform distribution is calculated as thus;

[tex]Var = \frac{(b-a+1)^2}{12}[/tex]

Substitute values for a and b

[tex]Var = \frac{(6-2+1)^2}{12}[/tex]

[tex]Var = \frac{5^2}{12}[/tex]

[tex]Var = \frac{25}{12}[/tex]