Respuesta :

Answer:

    f(x) = x³ – 3x² – 10x + 24 = (x + 3)(x – 2)(x – 4)

Step-by-step explanation:

I would use the Horner method.

f(x) = x³ – 3x² – 10x + 24

f(2) = 2³ - 3·2² - 10·2 +24 = 0   ⇒ x=2 is the root of function

So:

    |   1   | -3   |  -10  |  24 |

2  |   1   |  -1   |  -12  |  0   |

therefore:

f(x) = x³ – 3x² – 10x + 24 =  (x – 2)(x² – x – 12)

For  x² – x – 12:

[tex]x=\dfrac{1\pm\sqrt{(-1)^2-4\cdot1\cdot(-12)}}{2\cdot1}=\dfrac{1\pm\sqrt{1+48}}{2}=\dfrac{1\pm7}{2}\\\\x_1=\dfrac{1+7}{2}=4\ ,\qquad x_2=\dfrac{1-7}{2}=-3[/tex]

It means:

f(x) = x³ – 3x² – 10x + 24 =  (x – 2)(x – 4)(x + 3)