The probability of event A is 0.2 and probability of event B is 0.3. Given that A and B are independent, then the probability of A and B (A intersection B) is: Choose one • 10 points 5% 6% 9% 13%

Respuesta :

Answer:

[tex]P(A\ n\ B) = 6\%[/tex]

Step-by-step explanation:

Given

[tex]P(A) = 0.2[/tex]

[tex]P(B) = 0.3[/tex]

Required

Determine [tex]P(A\ n\ B)[/tex]

Since both events are independent;

[tex]P(A\ n\ B) = P(A) * P(B)[/tex]

[tex]P(A\ n\ B) = 0.2 * 0.3[/tex]

[tex]P(A\ n\ B) = 0.06[/tex]

Convert to %

[tex]P(A\ n\ B) = 0.06 * 100\%[/tex]

[tex]P(A\ n\ B) = 6\%[/tex]