Answer:
[tex]Remainder = 1956[/tex]
[tex]Quotient = 5[/tex]
Step-by-step explanation:
Given
[tex]Dividend = n[/tex]
[tex]Divisor = 10000[/tex]
[tex]Quotient = 1[/tex]
[tex]Remainder = 2011[/tex]
Required
Determine the quotient and remainder when the divisor is 2011
First, we need to determine the value of n.
The relationship between the given parameters is:
[tex]Dividend = Quotient * Divisor + Remainder[/tex]
Substitute values in the above:
[tex]n = 1 * 10000 + 2011[/tex]
[tex]n = 10000 + 2011[/tex]
[tex]n =12011[/tex]
So, we divide 12011 by 2011 and record the quotient and divisor:
[tex]\frac{12011}{2011} =[/tex]
The integer division of 12011 and 2011 is 5.
The remainder is calculated using:
[tex]Dividend = Quotient * Divisor + Remainder[/tex]
Where
[tex]Dividend = 12011[/tex]
[tex]Quotient = 5[/tex]
[tex]Divisor = 2011[/tex]
So, Remainder =:
[tex]Remainder = 12011 - 2011* 5[/tex]
[tex]Remainder = 12011 - 10055[/tex]
[tex]Remainder = 1956[/tex]
Hence:
[tex]\frac{12011}{2011} = 5\ Remainder\ 1956[/tex]