Answer:
The margin of error for the 94% confidence interval is 0.6154.
Step-by-step explanation:
The (1 - α)% confidence interval for population mean is:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}[/tex]
The margin of error of this interval is:
[tex]MOE=z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}[/tex]
The critical value of z for 94% confidence level is, z = 1.88.
Compute the margin of error for the 94% confidence interval as follows:
[tex]MOE=z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}[/tex]
[tex]=1.88\times\frac{3}{\sqrt{84}}\\\\=0.6154[/tex]
Thus, the margin of error for the 94% confidence interval is 0.6154.