Respuesta :

toporc
[tex]y=-5x^{-1}[/tex]
[tex]\frac{dy}{dx}=\frac{5}{x^{2}}[/tex]
The instantaneous slope at x = 5 is 1/5.

The answer is 1/5.

Answer:

Instantaneous slope  is [tex]\frac{1}{5}[/tex]

Step-by-step explanation:

the instantaneous slope of y=-5\x at x=5

[tex]y=\frac{-5}{x}[/tex]

To find instantaneous slope we take derivative of y

Derivative of 1/x is -1/x^2

[tex]y'=\frac{5}{x^2}[/tex]

We need to find out instantaneous slope at x=5

so we plug in 5 for x in y'

[tex]y'=\frac{5}{x^2}[/tex]

[tex]y'=\frac{5}{5^2}[/tex]

[tex]y'=\frac{5}{25}[/tex]

[tex]y'=\frac{1}{5}[/tex]

Instantaneous slope  is [tex]\frac{1}{5}[/tex]