Help plz ASAP I WILL GIVE U BRAINLY!! <333

Rectangular coordinates (StartRoot 3 EndRoot, StartRoot 3 EndRoot) and polar coordinates (r, theta) = (StartRoot 6 EndRoot, StartFraction pi Over 4 EndFraction) both represent the same complex number z.


Which set of equations demonstrates why both sets of coordinates represent the same number?


A.) r = StartRoot 3 EndRoot + StartRoot 3 EndRoot = StartRoot 6 EndRoot and theta = inverse tangent of (1) = StartFraction pi over 4 EndFraction

B.) r = StartRoot 3 EndRoot + StartRoot 3 EndRoot = StartRoot 6 EndRoot and theta = inverse tangent of (StartRoot 3 EndRoot) = StartFraction pi over 4 EndFraction

correct one - C.) r = StartStartRoot (StartRoot 3 EndRoot) squared + (StartRoot 3 EndRoot) squared EndEndRoot = StartRoot 6 EndRoot and theta = inverse tangent of (1) = StartFraction pi Over 4 EndFraction

D.) r = StartStartRoot (StartRoot 3 EndRoot) squared + (StartRoot 3 EndRoot) squared EndEndRoot = StartRoot 6 EndRoot and theta = inverse tangent of (StartRoot 3 EndRoot) = StartFraction pi Over 4 EndFraction

Respuesta :

Answer:

It is C. r = StartStartRoot (StartRoot 3 EndRoot) squared + (StartRoot 3 EndRoot) squared EndEndRoot = StartRoot 6 EndRoot and theta = inverse tangent of (1) = StartFraction pi Over 4 EndFraction

Step-by-step explanation:

edge2020

The rectangular coordinates (√3,√3) and polar coordinates (√6,[tex]\frac{\pi}{4}[/tex]) represent the same complex number z=x+iy because,

[tex]r=\sqrt{(\sqrt3)^2+(\sqrt3)^2}=\sqrt6[/tex] and,

[tex]\theta=\arctan(\frac{\sqrt3}{\sqrt3})=\arctan(1)=\frac{\pi}{4}[/tex]

The question is not written in an understandable manner look at the question in the below-given image.

What is polar coordinate?

In terms of Cartesian coordinates, the polar coordinates r (the radial coordinate) and θ (the angular coordinate, often known as the polar angle),

x = rcosθ

(1)

y = rsinθ, 

(2)

where r is the radial distance from the origin and θ is the counterclockwise angle from the x-axis. In relation to x and y,

[tex]r=\sqrt{x^2+y^2}[/tex]

(3)

[tex]\theta=\arctan(\frac{y}{x})[/tex]

How to solve it?

Using the above explanation of polar coordinates we have that

[tex]r=\sqrt{(\sqrt3)^2+(\sqrt3)^2}=\sqrt6[/tex] and

[tex]\theta=\arctan(\frac{\sqrt3}{\sqrt3})=\arctan(1)=\frac{\pi}{4}[/tex]

Learn more about polar coordinates here-

brainly.com/question/18068617

#SPJ2

Ver imagen varshamittal029
Ver imagen varshamittal029