Respuesta :

Answer:

[tex] cos(R) = \frac{\sqrt{15}}{5} [/tex]

Step-by-step explanation:

To find the cosine of <R, apply the following trigonometric ratio formula:

[tex] cos(R) = \frac{adjacent}{hypotenuse} [/tex]

Adjacent = 3

Hypotenuse = √15

Plug in the values into the formula

[tex] cos(R) = \frac{3}{\sqrt{15}} [/tex]

Multiply the numerator and denominator by √15 to rationalize.

[tex] cos(R) = \frac{3 \times \sqrt{15}}{\sqrt{15} \times \sqrt{15}} [/tex]

[tex] cos(R) = \frac{3\sqrt{15}}{(\sqrt{15})^2} [/tex]

[tex] cos(R) = \frac{3\sqrt{15}}{15} [/tex]

[tex] cos(R) = \frac{\sqrt{15}}{5} [/tex]