Line segment EG is partitioned by point F in the ratio 1:2. Point E is at E (0, 4), and point F is at (1, 3). What are the coordinates of point G?

(−1, 5)
(2, 2)
(3, 1)
(4, 0)

Respuesta :

Answer:

(3, 1)

Step-by-step explanation:

The coordinates of point G is (c) (3,1)

The coordinate points are given as:

[tex]\mathbf{E = (0,4)}[/tex]

[tex]\mathbf{F = (1,3)}[/tex]

The ratio is given as:

[tex]\mathbf{m : n = 1 :2}[/tex]

Line ratio is given as:

[tex]\mathbf{(x,y) = \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}}[/tex]

Point F is at the partitioned point.

So, we have:

[tex]\mathbf{(1,3) = \frac{1 \times x_2 + 2 \times 0}{1 + 2}, \frac{1 \times y_2 + 2 \times 4}{1 + 2}}[/tex]

[tex]\mathbf{(1,3) = \frac{x_2 }{3}, \frac{y_2 + 8}{3}}[/tex]

Multiply through by 3

[tex]\mathbf{(3,9) = (x_2, y_2 + 8)}[/tex]

By comparison, we have:

[tex]\mathbf{x_2 = 3}[/tex]

[tex]\mathbf{y_2 + 8= 9}[/tex]

Subtract 8 from both sides

[tex]\mathbf{y_2 = 1}[/tex]

Hence, the coordinates of point G is (c) (3,1)

Read more about line partitions at:

https://brainly.com/question/3148758