Respuesta :

2460.51

A = c^2/4pi
175.84^2/4pi

A≈ 2460.51

Answer:

[tex]{ \boxed{ \bold{ \text{Area \: of \: a \: circle} \: = \tt{2461.76 \: {inches}^{2}}}}} [/tex]

☯ Question :

  • Find the area of a circle that has a circumference of 175.84 inches.

☯ Step - by - step explanation :

Given :

  • Circumference of a circle = 175.84 inches

To find :

  • Area of a circle = ?

First, we have to find :

  • Radius of a circle ( r )

Finding the radius of a circle :

[tex] \boxed{ \sf{Circumference \: of \: a \: circle = 2\pi \: r}}[/tex]

Substitute the value of circumference of a circle

[tex] \longrightarrow{ \sf{175.84 = 2\pi \: r}}[/tex]

Swap the sides of the equation

⟶ [tex] \sf{2\pi \: r \: = 175.84}[/tex]

Use [tex] \sf{ \pi \: ≈ \: 3.14}[/tex] , we obtain

[tex] \longrightarrow{ \sf{2 \times 3.14 \times r = 175.84}}[/tex]

Multiply : 2 by 3.14

[tex] \longrightarrow{ \sf{6.28 \: r = 175.84}}[/tex]

Divide both sides by 6.28

[tex] \longrightarrow{ \sf{ \frac{6.28 \: r}{6.28} = \frac{175.84}{6.28}}} [/tex]

[tex] \longrightarrow{ \sf{r \: = \: 28 \: inches}}[/tex]

Now , we have :

  • Radius of a circle ( r ) = 28 inches

Finding the area of a circle having the radius of 28 inches :

[tex] \boxed{ \sf{Area \: of \: a \: circle = \pi \: {r}^{2} }}[/tex]

Substituting the radius , we get :

[tex] \longrightarrow{ \sf{Area \: of \: a \: circle = \pi \: {(28)}^{2} }}[/tex]

[tex] \longrightarrow{ \sf{Area \: of \: a \: circle = 784 \: \pi}}[/tex]

Using [tex] \sf{\pi \: ≈ \: 3.14}[/tex] , we obtain :

[tex] \longrightarrow{ \sf{Area \: of \: a \: circle = 784 \times 3.14 }}[/tex]

[tex] \longrightarrow{ \boxed{ \sf{Area \: of \: a \: circle = 2461.76 \: {inches}^{2} }}}[/tex]

Therefore , area of a circle is 2461.76 inches²

And we're done !

Hope I helped!

Have a wonderful time!ツ

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Ver imagen TheAnimeGirl