Respuesta :
Given:
The volume of the rectangular prism is
[tex]V=4x^3+5x^2-32x-33[/tex]
Two dimensions are (x+1) and (x+3).
To find:
The missing dimension.
Solution:
We know that, volume of a rectangular prism is
[tex]V=length\times breadth\times height[/tex]
It means, volume of a rectangular prism is the product of all dimensions.
We have,
[tex]V=4x^3+5x^2-32x-33[/tex]
Splitting the middle terms, we get
[tex]V=4x^3+4x^2+x^2+x-33x-33[/tex]
[tex]V=4x^2(x+1)+x(x+1)-33(x+1)[/tex]
[tex]V=(x+1)(4x^2+x-33)[/tex]
Splitting the middle term, we get
[tex]V=(x+1)(4x^2+12x-11x-33)[/tex]
[tex]V=(x+1)(4x(x+3)-11(x+3))[/tex]
[tex]V=(x+1)(x+3)(4x-11)[/tex]
So, the three dimensions of the rectangular prism are (x+1), (x+3) and (4x-11).
Therefore, the missing dimension is (4x-11).