Respuesta :

Answer:

[tex]\sec(x)=\frac{1}{\sqrt{1-m^2}}[/tex]

Step-by-step explanation:

We know that:

[tex]\sin(-x)=-m[/tex]

First, since sine is an odd function, we can move the negative outside:

[tex]=-\sin(x)=-m[/tex]

Divide both sides by -1:

[tex]\sin(x)=m[/tex]

We will now use the Pythagorean Identity:

[tex]\cos^2(x)+\sin^2(x)=1[/tex]

Substitute m for sine:

[tex]\cos^2(x)+m^2=1[/tex]

Solve for cosine:

[tex]\cos^2(x)=1-m^2[/tex]

Take the square root of both sides:

[tex]\cos(x)=\pm\sqrt{1-m^2}[/tex]

Since x is an acute angle, cosine will always be positive. Thus:

[tex]\cos(x)=\sqrt{1-m^2}[/tex]

Take the reciprocal of both sides. Hence:

[tex]\frac{1}{\cos(x)}=\sec(x)=\frac{1}{\sqrt{1-m^2}}[/tex]