Respuesta :

Answer:

sin ∠FDE is 12/13

Step-by-step explanation:

The trigonometric ratios will be used to find the value of sin∠FDE

In the given triangle, according to angle FDE

Base = DE = 5

Hypotenuse = DF = 13

Perpendicular = EF = ?

sin ∠FDE = [tex]\frac{perpendicular}{Hypotenuse} = \frac{EF}{DF}[/tex]

We have to find the length of DF first

Pythagoras theorem will be used as the given triangle is a right angled triangle

[tex](Hypotenuse)^2 = (Base)^2+(perpendicular)^2\\(DF)^2 = (DE)^2+(EF)^2\\(13)^2 = (5)^2 + EF^2\\169 = 25+EF^2\\EF^2 = 169-25\\EF^2 = 144\\\sqrt{EF^2} = \sqrt{144}\\EF = 12[/tex]

So,

sin ∠FDE = EF/DF

sin ∠FDE = 12/13

Hence,

sin ∠FDE is 12/13