Respuesta :

Answer:

x = 58

[tex] m\angle 4 = 116\degree [/tex]

Step-by-step explanation:

[tex] m\angle 2 = m\angle 6..... (1)\\(alternate \: \angle s) \\\\

m\angle 5 + m\angle 6 = 180\degree \\(linear \: pair\: \angle s) \\\\

\therefore m\angle 6 = 180\degree-m\angle 5..... (2)\\\\[/tex]

From equations (1) & (2)

[tex] m\angle 2 =180\degree-m\angle 5\\\\

\therefore (2x)\degree =180\degree-(x+6)\degree \\\\

\therefore (2x)\degree +(x+6)\degree =180\degree\\\\

\therefore (2x+x+6) \degree =180\degree\\\\

\therefore (3x+6) \degree =180\degree\\\\

3x + 6 = 180\\\\

3x = 180-6\\\\

3x = 174\\\\

x = \frac{174}{3} \\\\

\huge \purple {\boxed {x = 58}} \\\\

\because m\angle 4 = m\angle 2\\(corresponding \: \angle s) \\\\

\therefore m\angle 4 = (2x)\degree \\\\

\therefore m\angle 4 = (2\times 58)\degree \\\\

\huge \orange {\boxed {\therefore m\angle 4 = 116\degree}} [/tex]