Answer:
Part 1):
Part 2):
Part 3):
Part 4):
Step-by-step explanation:
Considering the function
[tex]f(x) = 5x + 4[/tex]
[tex]g(x) = x - 3[/tex]
Part 1)
To evaluate [tex]f(g(6))[/tex], you must find [tex]g(6)[/tex]
so
[tex]g(x) = x - 3[/tex]
Put x = 6
[tex]g(6) = 6 - 3[/tex]
[tex]g(6) = 3[/tex]
Then
[tex]f(g(6))=f(3)[/tex]
[tex]=5(3)+4[/tex]
[tex]=19[/tex]
Therefore, [tex]f(g(6))=19[/tex]
Part 2)
To evaluate [tex]g(f(-7))[/tex], you must find [tex]f(-7)[/tex]
so
[tex]f(x) = 5x + 4[/tex]
Put x = -7
[tex]f(-7) = 5(-7) + 4[/tex]
[tex]=-35+4[/tex]
[tex]=-31[/tex]
Then
[tex]g(f(-7))=g(-31)[/tex]
[tex]= (-31) - 3[/tex]
[tex]=-34[/tex]
Therefore, [tex]g(f(-7))=-34[/tex]
Part 3)
To evaluate [tex]f(f(8))[/tex], you must find [tex]f(8)[/tex]
[tex]f(x) = 5x + 4[/tex]
Put x = 8
[tex]f(8)=5(8)+4=40+4=44[/tex]
Then
[tex]f(f(8))=f(44)=5(44)+4=220+4=224[/tex]
Therefore,
[tex]f(f(8))=224[/tex]
Part 4)
Evaluate
[tex]g(f(x))[/tex]
As
[tex]f(x) = 5x + 4[/tex]
[tex]g(x) = x - 3[/tex]
so
[tex]g(f(x))=g(5x+4)[/tex]
[tex]=(5x+4)-3[/tex]
[tex]=5x+4-3[/tex]
[tex]=5x+1[/tex]
Therefore,
[tex]g(f(x))=5x+1[/tex]