Answer:
Step-by-step explanation:
Considering the functions
[tex]f(x) = 5x + 4[/tex]
[tex]g(x) = x - 3[/tex]
Part 1)
Find
We need to first dertermine [tex]g(6)[/tex]
[tex]g(x) = x - 3[/tex]
Putting x = 6
[tex]g(6) = 6-3=3[/tex]
Then
[tex]f(g(6))=f(3)=5(3)+4=15+4=19[/tex]
Hence,
[tex]f(g(6))=19[/tex]
Part 2)
Find
We need to first dertermine [tex]f(-7)[/tex]
[tex]f(x) = 5x + 4[/tex]
Putting x = -7
[tex]f(-7) = 5(-7)+4=-35+4=-31[/tex]
Then
[tex]g(f(-7))=g(-31)=(-31-3)=-34[/tex]
Hence,
[tex]g(f(-7))=-34[/tex]
Part 3)
Find
We need to first dertermine [tex]f(8)[/tex]
Putting x = 8
[tex]f(8) = 5(8)+4=40+4=44[/tex]
Then
[tex]f(f(8))=f(44)=5(44)+4=220+4=224[/tex]
Hence,
[tex]f(f(8))=224[/tex]
Part 4)
Find
[tex]f(x) = 5x + 4[/tex]
[tex]g(f(x))=g(5x+4)[/tex]
[tex]=(5x+4)-3=5x+1[/tex]
Hence,
[tex]g(f(x))=5x+1[/tex]