What are the values of a and b?
a=
b=

Answer:
The values of a and b are:
Step-by-step explanation:
Given the exponential model
[tex]y=a\cdot \:b^x[/tex]
Given the points
(0, 2) and (3, 128)
We know that the y-intercept of [tex]y=a\cdot \:b^x[/tex] is (0, a).
so
a = 2
putting x = 3, y = 128 and a = 2
[tex]y=a\cdot \:b^x[/tex]
[tex]128=2\cdot \:b^3[/tex]
Switching sides
[tex]2b^3=128[/tex]
[tex]\frac{2b^3}{2}=\frac{128}{2}[/tex]
[tex]b^3=64[/tex]
Taking the real value such as:
[tex]\mathrm{For\:}x^3=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt[3]{f\left(a\right)}[/tex]
so
[tex]b=\sqrt[3]{64}[/tex]
[tex]b=\sqrt[3]{4^3}[/tex]
[tex]b=4[/tex]
Therefore,