Respuesta :

Answer:

The values of a and b are:

  • a = 2
  • [tex]b=4[/tex]

Step-by-step explanation:

Given the exponential model

[tex]y=a\cdot \:b^x[/tex]

Given the points

(0, 2) and (3, 128)

We know that the y-intercept of [tex]y=a\cdot \:b^x[/tex] is (0, a).

so

a = 2

putting x = 3, y = 128 and a = 2

[tex]y=a\cdot \:b^x[/tex]

[tex]128=2\cdot \:b^3[/tex]

Switching sides

[tex]2b^3=128[/tex]

[tex]\frac{2b^3}{2}=\frac{128}{2}[/tex]

[tex]b^3=64[/tex]

Taking the real value such as:

[tex]\mathrm{For\:}x^3=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt[3]{f\left(a\right)}[/tex]

so

[tex]b=\sqrt[3]{64}[/tex]

[tex]b=\sqrt[3]{4^3}[/tex]

[tex]b=4[/tex]

Therefore,

  • a = 2
  • [tex]b=4[/tex]

Otras preguntas