Respuesta :

Answer:

The anti-derivative of f(x) will be:

[tex]\int \:10x^4+12.5dx=2x^5+12.5x+C[/tex]

Step-by-step explanation:

Given the function

[tex]\:f\left(x\right)=10x^4\:+\:12.5[/tex]

Taking the anti-derivative of f(x)

[tex]\int \left(10x^4\:+\:12.5\right)\:dx\:[/tex]

[tex]\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex]

[tex]\int \left(10x^4\:+\:12.5\right)\:dx\:=\int \:10x^4dx+\int \:12.5dx[/tex]

Solving

[tex]\int 10x^4dx[/tex]

[tex]\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx[/tex]

[tex]=10\cdot \int \:x^4dx[/tex]

[tex]\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1[/tex]

[tex]=2x^5[/tex]

similarly,

[tex]\int 12.5dx[/tex]

[tex]\mathrm{Integral\:of\:a\:constant}:\quad \int adx=ax[/tex]

[tex]=12.5x[/tex]

so substituting these values

[tex]\int \left(10x^4\:+\:12.5\right)\:dx\:=\int \:10x^4dx+\int \:12.5dx[/tex]

                                [tex]=2x^5+12.5x[/tex]

                               [tex]=2x^5+12.5x+C[/tex]   ∵ Add constant to the solution

Therefore, the anti-derivative of f(x) will be:

[tex]\int \:10x^4+12.5dx=2x^5+12.5x+C[/tex]