Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Let t as + 5y .

[tex] {y}^{2} + 5y = t[/tex]

Rewrite the equation :

[tex]t - \frac{36}{t} = 0 \\ [/tex]

Multiply sides by t

[tex]t \times (t - \frac{36}{t} ) = t \times 0 \\ [/tex]

[tex] {t}^{2} - 36 = 0[/tex]

Add sides 36

[tex] {t}^{2} - 36 + 36 = 0 + 36[/tex]

[tex] {t}^{2} = 36[/tex]

[tex]t = ± \: 6[/tex]

_________________________________

So :

[tex] {y}^{2} + 5y = 6[/tex]

Subtract sides 6

[tex] {y}^{2} + 5y - 6 = 6 - 6[/tex]

[tex] {y}^{2} + 5y - 6 = 0[/tex]

[tex](y + 6)(y - 1) = 0[/tex]

[tex]y = - 6 \: \: or \: \: y = 1[/tex]

##############################

[tex] {y}^{2} +5y = - 6[/tex]

[tex]No \: \: solution[/tex]

_________________________________

Thus (( y = 1 )) and (( y = - 6 )) are the roots of the equation .

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️