Respuesta :

Space

Answer:

C. [tex]\frac{f(b)-f(1)}{b-1}=20[/tex]

General Formulas and Concepts:

Calculus

  • Mean Value Theorem (MVT) - If f is continuous on interval [a, b], then there is a c∈[a, b] such that  [tex]f'(c)=\frac{f(b)-f(a)}{b-a}[/tex]
  • MVT is also Average Value

Step-by-step explanation:

Step 1: Define

[tex]f(x)=e^{2x}[/tex]

f'(c) = 20

Interval [1, b]

Step 2: Check/Identify

Function [1, b] is continuous.

Derivative [1, b] is continuous.

∴ There exists a c∈[1, b] such that [tex]f'(c)=\frac{f(b)-f(a)}{b-a}[/tex]

Step 3: Mean Value Theorem

  1. Substitute:                    [tex]20=\frac{ f(b)-f(1)}{b-1}[/tex]
  2. Rewrite:                        [tex]\frac{ f(b)-f(1)}{b-1}=20[/tex]

And we have our final answer!